Copied to
clipboard

G = C42.153D6order 192 = 26·3

153rd non-split extension by C42 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.153D6, C6.1332+ 1+4, (C4×D12)⋊48C2, C4⋊C4.209D6, C42.C29S3, C12⋊D433C2, Dic35D437C2, D6.32(C4○D4), D6.D435C2, C2.58(D4○D12), (C2×C12).91C23, (C2×C6).239C24, D6⋊C4.41C22, C12.130(C4○D4), (C4×C12).198C22, C4.39(Q83S3), (C2×D12).268C22, Dic3⋊C4.54C22, C4⋊Dic3.315C22, C22.260(S3×C23), (C22×S3).104C23, (C2×Dic3).124C23, (C4×Dic3).145C22, C310(C22.47C24), (S3×C4⋊C4)⋊39C2, C4⋊C4⋊S337C2, C4⋊C47S338C2, C2.90(S3×C4○D4), C6.201(C2×C4○D4), (S3×C2×C4).129C22, (C2×C4).82(C22×S3), C2.24(C2×Q83S3), (C3×C42.C2)⋊12C2, (C3×C4⋊C4).194C22, SmallGroup(192,1254)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C42.153D6
C1C3C6C2×C6C22×S3S3×C2×C4S3×C4⋊C4 — C42.153D6
C3C2×C6 — C42.153D6
C1C22C42.C2

Generators and relations for C42.153D6
 G = < a,b,c,d | a4=b4=1, c6=d2=a2b2, ab=ba, cac-1=dad-1=a-1, cbc-1=a2b-1, dbd-1=a2b, dcd-1=c5 >

Subgroups: 656 in 238 conjugacy classes, 97 normal (43 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C2×C4, C2×C4, C2×C4, D4, C23, Dic3, C12, C12, D6, D6, C2×C6, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×D4, C4×S3, D12, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C22×S3, C22×S3, C2×C4⋊C4, C42⋊C2, C4×D4, C4⋊D4, C22.D4, C42.C2, C422C2, C4×Dic3, Dic3⋊C4, C4⋊Dic3, D6⋊C4, D6⋊C4, C4×C12, C3×C4⋊C4, C3×C4⋊C4, S3×C2×C4, S3×C2×C4, C2×D12, C2×D12, C22.47C24, C4×D12, S3×C4⋊C4, C4⋊C47S3, Dic35D4, D6.D4, C12⋊D4, C12⋊D4, C4⋊C4⋊S3, C3×C42.C2, C42.153D6
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C24, C22×S3, C2×C4○D4, 2+ 1+4, Q83S3, S3×C23, C22.47C24, C2×Q83S3, S3×C4○D4, D4○D12, C42.153D6

Smallest permutation representation of C42.153D6
On 96 points
Generators in S96
(1 57 66 31)(2 32 67 58)(3 59 68 33)(4 34 69 60)(5 49 70 35)(6 36 71 50)(7 51 72 25)(8 26 61 52)(9 53 62 27)(10 28 63 54)(11 55 64 29)(12 30 65 56)(13 76 40 89)(14 90 41 77)(15 78 42 91)(16 92 43 79)(17 80 44 93)(18 94 45 81)(19 82 46 95)(20 96 47 83)(21 84 48 85)(22 86 37 73)(23 74 38 87)(24 88 39 75)
(1 83 72 90)(2 78 61 85)(3 73 62 92)(4 80 63 87)(5 75 64 94)(6 82 65 89)(7 77 66 96)(8 84 67 91)(9 79 68 86)(10 74 69 93)(11 81 70 88)(12 76 71 95)(13 36 46 56)(14 31 47 51)(15 26 48 58)(16 33 37 53)(17 28 38 60)(18 35 39 55)(19 30 40 50)(20 25 41 57)(21 32 42 52)(22 27 43 59)(23 34 44 54)(24 29 45 49)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 37 7 43)(2 42 8 48)(3 47 9 41)(4 40 10 46)(5 45 11 39)(6 38 12 44)(13 63 19 69)(14 68 20 62)(15 61 21 67)(16 66 22 72)(17 71 23 65)(18 64 24 70)(25 79 31 73)(26 84 32 78)(27 77 33 83)(28 82 34 76)(29 75 35 81)(30 80 36 74)(49 94 55 88)(50 87 56 93)(51 92 57 86)(52 85 58 91)(53 90 59 96)(54 95 60 89)

G:=sub<Sym(96)| (1,57,66,31)(2,32,67,58)(3,59,68,33)(4,34,69,60)(5,49,70,35)(6,36,71,50)(7,51,72,25)(8,26,61,52)(9,53,62,27)(10,28,63,54)(11,55,64,29)(12,30,65,56)(13,76,40,89)(14,90,41,77)(15,78,42,91)(16,92,43,79)(17,80,44,93)(18,94,45,81)(19,82,46,95)(20,96,47,83)(21,84,48,85)(22,86,37,73)(23,74,38,87)(24,88,39,75), (1,83,72,90)(2,78,61,85)(3,73,62,92)(4,80,63,87)(5,75,64,94)(6,82,65,89)(7,77,66,96)(8,84,67,91)(9,79,68,86)(10,74,69,93)(11,81,70,88)(12,76,71,95)(13,36,46,56)(14,31,47,51)(15,26,48,58)(16,33,37,53)(17,28,38,60)(18,35,39,55)(19,30,40,50)(20,25,41,57)(21,32,42,52)(22,27,43,59)(23,34,44,54)(24,29,45,49), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,37,7,43)(2,42,8,48)(3,47,9,41)(4,40,10,46)(5,45,11,39)(6,38,12,44)(13,63,19,69)(14,68,20,62)(15,61,21,67)(16,66,22,72)(17,71,23,65)(18,64,24,70)(25,79,31,73)(26,84,32,78)(27,77,33,83)(28,82,34,76)(29,75,35,81)(30,80,36,74)(49,94,55,88)(50,87,56,93)(51,92,57,86)(52,85,58,91)(53,90,59,96)(54,95,60,89)>;

G:=Group( (1,57,66,31)(2,32,67,58)(3,59,68,33)(4,34,69,60)(5,49,70,35)(6,36,71,50)(7,51,72,25)(8,26,61,52)(9,53,62,27)(10,28,63,54)(11,55,64,29)(12,30,65,56)(13,76,40,89)(14,90,41,77)(15,78,42,91)(16,92,43,79)(17,80,44,93)(18,94,45,81)(19,82,46,95)(20,96,47,83)(21,84,48,85)(22,86,37,73)(23,74,38,87)(24,88,39,75), (1,83,72,90)(2,78,61,85)(3,73,62,92)(4,80,63,87)(5,75,64,94)(6,82,65,89)(7,77,66,96)(8,84,67,91)(9,79,68,86)(10,74,69,93)(11,81,70,88)(12,76,71,95)(13,36,46,56)(14,31,47,51)(15,26,48,58)(16,33,37,53)(17,28,38,60)(18,35,39,55)(19,30,40,50)(20,25,41,57)(21,32,42,52)(22,27,43,59)(23,34,44,54)(24,29,45,49), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,37,7,43)(2,42,8,48)(3,47,9,41)(4,40,10,46)(5,45,11,39)(6,38,12,44)(13,63,19,69)(14,68,20,62)(15,61,21,67)(16,66,22,72)(17,71,23,65)(18,64,24,70)(25,79,31,73)(26,84,32,78)(27,77,33,83)(28,82,34,76)(29,75,35,81)(30,80,36,74)(49,94,55,88)(50,87,56,93)(51,92,57,86)(52,85,58,91)(53,90,59,96)(54,95,60,89) );

G=PermutationGroup([[(1,57,66,31),(2,32,67,58),(3,59,68,33),(4,34,69,60),(5,49,70,35),(6,36,71,50),(7,51,72,25),(8,26,61,52),(9,53,62,27),(10,28,63,54),(11,55,64,29),(12,30,65,56),(13,76,40,89),(14,90,41,77),(15,78,42,91),(16,92,43,79),(17,80,44,93),(18,94,45,81),(19,82,46,95),(20,96,47,83),(21,84,48,85),(22,86,37,73),(23,74,38,87),(24,88,39,75)], [(1,83,72,90),(2,78,61,85),(3,73,62,92),(4,80,63,87),(5,75,64,94),(6,82,65,89),(7,77,66,96),(8,84,67,91),(9,79,68,86),(10,74,69,93),(11,81,70,88),(12,76,71,95),(13,36,46,56),(14,31,47,51),(15,26,48,58),(16,33,37,53),(17,28,38,60),(18,35,39,55),(19,30,40,50),(20,25,41,57),(21,32,42,52),(22,27,43,59),(23,34,44,54),(24,29,45,49)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,37,7,43),(2,42,8,48),(3,47,9,41),(4,40,10,46),(5,45,11,39),(6,38,12,44),(13,63,19,69),(14,68,20,62),(15,61,21,67),(16,66,22,72),(17,71,23,65),(18,64,24,70),(25,79,31,73),(26,84,32,78),(27,77,33,83),(28,82,34,76),(29,75,35,81),(30,80,36,74),(49,94,55,88),(50,87,56,93),(51,92,57,86),(52,85,58,91),(53,90,59,96),(54,95,60,89)]])

39 conjugacy classes

class 1 2A2B2C2D2E2F2G2H 3 4A4B4C4D4E···4I4J···4O4P6A6B6C12A···12F12G12H12I12J
order122222222344444···44···4466612···1212121212
size111166121212222224···46···6122224···48888

39 irreducible representations

dim111111111222224444
type+++++++++++++++
imageC1C2C2C2C2C2C2C2C2S3D6D6C4○D4C4○D42+ 1+4Q83S3S3×C4○D4D4○D12
kernelC42.153D6C4×D12S3×C4⋊C4C4⋊C47S3Dic35D4D6.D4C12⋊D4C4⋊C4⋊S3C3×C42.C2C42.C2C42C4⋊C4C12D6C6C4C2C2
# reps121122421116441222

Matrix representation of C42.153D6 in GL6(𝔽13)

1200000
0120000
000500
005000
0000120
0000012
,
100000
010000
000100
001000
000050
0000118
,
12120000
100000
005000
000800
0000128
000031
,
110000
0120000
008000
000500
000050
000005

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,5,0,0,0,0,5,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,5,11,0,0,0,0,0,8],[12,1,0,0,0,0,12,0,0,0,0,0,0,0,5,0,0,0,0,0,0,8,0,0,0,0,0,0,12,3,0,0,0,0,8,1],[1,0,0,0,0,0,1,12,0,0,0,0,0,0,8,0,0,0,0,0,0,5,0,0,0,0,0,0,5,0,0,0,0,0,0,5] >;

C42.153D6 in GAP, Magma, Sage, TeX

C_4^2._{153}D_6
% in TeX

G:=Group("C4^2.153D6");
// GroupNames label

G:=SmallGroup(192,1254);
// by ID

G=gap.SmallGroup(192,1254);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,387,100,1571,185,192,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^6=d^2=a^2*b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=a^2*b^-1,d*b*d^-1=a^2*b,d*c*d^-1=c^5>;
// generators/relations

׿
×
𝔽